Effective Capacity and Randomness of Closed Sets
نویسندگان
چکیده
منابع مشابه
Effective Capacity and Randomness of Closed Sets
We investigate the connection between measure and capacity for the space C of nonempty closed subsets of 2N. For any computable measure μ∗, a computable capacity T may be defined by letting T (Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an effective version of the Choquet’s theorem by showing that every computable capacity may be obtained f...
متن کاملAlgorithmic Randomness and Capacity of Closed Sets
We investigate the connection between measure, capacity and algorithmic randomness for the space of closed sets. For any computable measure m, a computable capacity T may be de ned by letting T (Q) be the measure of the family of closed sets K which have nonempty intersection with Q. We prove an e ective version of Choquet's capacity theorem by showing that every computable capacity may be obta...
متن کاملAlgorithmic Randomness of Closed Sets
We investigate notions of randomness in the space C[2N] of nonempty closed subsets of {0, 1}N. A probability measure is given and a version of the Martin-Löf test for randomness is defined. Π2 random closed sets exist but there are no random Π1 closed sets. It is shown that any random closed set is perfect, has measure 0, and has box dimension log2 4 3 . A random closed set has no n-c.e. elemen...
متن کاملEffectively closed sets of measures and randomness
We show that if a real x ∈ 2 is strongly Hausdorff Hh-random, where h is a dimension function corresponding to a convex order, then it is also random for a continuous probability measure μ such that the μ-measure of the basic open cylinders shrinks according to h. The proof uses a new method to construct measures, based on effective (partial) continuous transformations and a basis theorem for Π...
متن کاملJump inversions inside effectively closed sets and applications to randomness
We study inversions of the jump operator on Π1 classes, combined with certain basis theorems. These jump inversions have implications for the study of the jump operator on the random degrees—for various notions of randomness. For example, we characterize the jumps of the weakly 2-random sets which are not 2-random, and the jumps of the weakly 1-random relative to 0′ sets which are not 2-random....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science
سال: 2010
ISSN: 2075-2180
DOI: 10.4204/eptcs.24.11